The Planetary News Radio – Episode 16: EPA Waters of the United States (WOTUS) Rollback and Global Forestry Management

Hello. Welcome to the Planetary News Radio Episode 16. The last time I talked about scientific suppression, well more specifically about a specific example of suppression, which was the removal of the TOXMAP database. The TOXMAP database was a collection of environmental databases that allowed scientists and regulators to track, find, and identify places where environmental contamination has occurred on United States soil. These are or sites where the EPA has investigated and officially declared that a contamination event has occurred, and those sites could go back to the seventies [in terms of when the first contamination event occurred]. 

So these could be historical sites where dumping of pesticides had happened before the regulations, and the pesticides are still there. So these areas were tracked. And then these could also be new sites because there could be new spills, new accidents. So, in other words, the TOXMAP database was a way to track accidental contamination of the environment, and that has been removed by the Trump administration. And so while the core databases that went into the TOXMAP database still exist, the the single map system/database [that allowed users] to easily see where these contamination events occur has been removed, and that’s part of something I’ve been talking about in these podcasts – a broader scope of scientific suppression. 

And so, you see, on the climate the Columbia, Columbia Climate Law Tracker, I think they have over 380 instances of recorded scientific suppression. They’re up to 402 now. In February, we have a new series of suppression events that look like they’re mostly around the EPA budget, National Science Foundation budget, NASA, NOAA, Department of the Interior. All of the [federal] budgets that are coming up have in them little pieces taking away science in some ways. So maybe you say, you know, NASA’s budget has increased overall, but they’ve taken away science in some areas. And I haven’t looked at those [new, specific examples,] yet. I’m just giving the number. 

So 402 instances of scientific suppression registered by Columbia Law. Then for Harvard Law, they have what they’ve called the regulatory rollback tracker. That’s just rollbacks in regulation and so Harvard’s Environmental and Energy Law program has about 76 instances where environmental rules have been rolled back. So between the two, this is quite a bit there. Sure, there’s some overlap. Harvard is specifically looking at regulatory rollbacks, whereas Columbia Law is looking at scientific suppression, that could be new science being held back. So there’s gonna be a lot more of that between the two of them. [Overall,] that’s a significant amount of a reduction in scientific expression, scientific freedom or in the use of science in policy. 

So we’re looking at this shift away from the use of science in government policy in the United States, which is concerning to me as a scientist. And that’s why I started all of this. So I’m going to talk about two articles today, and so this is a factcheck on one part, because I want to promote these articles and the news sources that they’re from. And so to do that confidently, I have to be able to have done a factcheck, [at least occasionally – I might not always analyze articles to this level of detail]. So I’ve done a fact check on two articles and then expanded on the research in those articles. So I call it a “drill-down”. I’m drilling down to the core topic. I’m checking it, and then I’m expanding on it. The way that I found these articles is from my TruthScore algorithm that I’m using to sort and rank science news articles. I’m looking at hundreds of thousands of RSS feeds and pulling what [should be] some of the best written articles. And so that’s why I’ve chosen these topics, it’s sort of an unbiased way. In other words, I didn’t pick pollution or forestry, I didn’t go in looking for pollution articles and or looking for a forest article. This is just what came to the top [after sorting by TruthScore].

I think my analysis of them will show that these are really well written articles. So if you want to learn more about, that side of this project, the TruthScore algorithm, the the sorting and the ranking side, you can listen to Episode 14 of this podcast where I describe and more detail that TruthScore that I’m calling it, and so you can learn more about that there. But for now, um I will take a look at the first article, and I thought about how to [structure this episode]. I’m pretty much just going to go through my notes, so it might be a little dry, but we’ll try it and see how it goes. 

The first article is in from The Guardian, and the title of the article is the Trump administration strips pollution safeguards from drinking water sources. And so this event is a rollback of protections for ephemeral streams and wetlands. An ephemeral stream is a temporary stream. And a wetland in this sense are either wetlands that are themselves temporary or wetlands that are fed by ephemeral streams. So this ends up being quite a bit of streams in the United States. In general, we have a very ephemeral stream system. I’m from the West Coast, [so I’m used to seeing ephemeral streams.] Or in other words, where I’m from, we don’t have rivers year round. I’m from Los Angeles County. You know, if I saw a river, I [would have been] amazed, I’m in Oregon now. Here I live next to a river that’s always there, but growing up in Southern California. We knew that if it rained, we might see rivers. After the snowmelt, we might see streams and waterfalls. Those were rare events, but we knew that they were there once a year, I knew, “Look, this area there’s gonna be a stream here. That’s a riverbed.” So I learned growing up how to spot, a riverbed, because I know what a riverbed looks like when it’s too dry, which turned out to be useful in college, when I had to find riverbeds when I had to find streams and collect samples.

So to me, I know what it’s ephemeral streams or a temporary stream, I suppose, growing up on the East Coast maybe that people might not know what that is. Streams and rivers run year ‘round there. So maybe, you know, I could understand how there’s a lack of education or a lack of knowledge here just because of the different geography of the United States. And so I could see how this [loss of designated streams and wetlands] might not really immediately jump out to someone as being really bad. But to me, this jumps out as really bad because as a kid, I knew innately that there are temporary streams, temporary rivers. I didn’t know how important those were until I went to college. I didn’t know there’s thousands of species of insects that live in those streams, and you know, that stream might only be active for two or three months. But all that wildlife uses those streams for those three months. So if you lose the stream, you lose the wildlife.

And so that’s why in 2015 when the Barack Obama administration had enacted an expansion of the original Clean Water Act (1972), and expanded the federal protections for these temporary streams, [it was] because of their ecological importance. And I think it’s true that, scientifically, we really only learned about the ecological importance of those streams recently. So I think the fact that this expansion happened in 2015 yeah, it’s part of Barack Obama’s overall shift towards expanding environmental protections. But it also is a reflection of our science and how our science has progressed. And it would have been a new scientific discovery in 2015 that we need to protect these streams, [at least in terms of policy implementation]. And that would have been under the recommendations of the U. S Geological Survey and working [in conjuction] with the EPA and the US Army Corps of Engineers. 

The Clean Water Act in 1972 gave the power for defining waters, [specifically] “navigable waters” in the United States, or [other types of] protected waters in the United States. It gave that power to the EPA and the US Army Corps of Engineers, so it’s a joint power there., but the problem there is, now, which it is clear to me, is that these are still both executive branch entities, the EPA and the Army. So in terms of policy, the executive branch decision could change any of those policies in a heartbeat – from one day the next day. Now, this has been debated for a long time, since 2015, so that the Obama administration made the rule change in 2015, but it didn’t just end there. You have the U. S. Geological [Survey], collecting data through 2017 and, um, what they had found is that this expansion had accounted for 18% of streams nationally, streams and rivers and 51% of wetlands nationally. 

So if we had 100 rivers in the United States, 18 of them were now under this protection. So we got 18 more streams, and if we had 100 wetlands, 51 of them were protected under this rule. The Trump administration’s response to this expansion was basically that this is a “very destructive, destructive and horrible rule”. That’s a quote from Donald Trump. The idea is that because of this expansion, because you said, well, “this temporary stream is now federally protected”, all that means is you have to have a permit to operate by it. So now, [the argument from the Trump administration is that], because these streams and wetlands required permits, it has damaged the industry, farmers and things like that. Anything that might pollute into water, which could be farm agricultural runoff [would have caused a slow-down of development. It could be power plants. Any type of industry that has some type of run off potential into a stream would have been affected by this. 

So from a deregulation standpoint, which is the focus of the Trump administration, [the existence of this rule] has been seen as a big problem. And so they’ve been talking about changing this rule since 2017 when the US geological Survey pulled those numbers they created. They identify that 18% in the streams and 51% count of wetlands. But now, today, the EPA says they I don’t know how many streams there are. So again, I see a suppression element there. “You can see that we had done the science and now we’re saying we didn’t do it or we can’t”, so basically the EPA is saying they can’t count streams. Well, I see that as a problem, because your job is to protect the streams, so you should be able to count the streams. So anyways, I’ll keep going down my notes. The other interesting thing about this, which goes back to my introduction of the topic, is that this disproportionately affects the Arid West, along the West Coast, which includes parts of Nevada, Arizona, California, Idaho, New Mexico, Oregon, Texas, Wyoming, in Washington. So that’s [at least] 9 states on the West Coast are disproportionately affected by this And so if you look just within those states, this expansion actually accounted for 35% of the streams in those states. 

So you’ve lost [federal] protection there for a big chunk of the states. And again, where those areas are where streams were temporary [are typically in] mountains, mountainous areas, in dry areas, [basically] in areas where water is already lacking. So in the driest parts of Southern California, this is in the most sensitive areas. So again, like I said, the current administration claims there is no data or they’re incapable of estimating the number of streams and wetlands affected by the rollback. Nationally, we have the data from USGS. 

The idea is that this new rule makes it easier for farmers and other types of industry industrial entities to develop, [but what is the overall ecological impact?]. The economic report that has been put out by Donald Trump says that the rollback is claiming to be the “most economically significant deregulatory action for energy”. This is expected to create a boom in terms of [industrial] development. Specifically, this weakens rules for regulation of mercury contamination. If you previously had to get a federal permit because your power plant has a process that creates some level of mercury and run-off, whatever that level was before, you don’t have to report it or there’s no federal regulation anymore, [because the stream isn’t even registered as a “stream”]. So now it’s a state rule, and maybe at the state level, they might not even have a rule on the books.

And so that brings me to the next big point here is that historically, this type of regulation has been done by the EPA and done by the US Army Corps of Engineers at a federal level, so half of the states in the country don’t have a system for this in place right now. This kicks the regulatory process to the state level, which isn’t necessarily inherently bad. But again, we’re looking at administrations that are refusing to use science to make state policy decisions. And so, if you say at the federal level, we have to use science to make a policy decision, then you get that benefit throughout the whole country. What if you say it’s up to the States? Well, you could have states, say Kentucky, Virginia, who have a history of refusing science, [or passing anti-science legislation], and you could have those states interpret the law differently and say, “Well, we don’t believe this data on mercury contamination,” and end up with a much more relaxed law in one state. And then maybe in California, who historically uses more science, California, New York, and Massachusetts, these states who have historically used more science in their policy decisions, they might have more stringent rules. So it creates a landscape in the country’s differential pollution landscape. [To summarize, states that are already environmentally responsible, will likely remain so. For states that aren’t environmentally responsible, this takes off even more pressure for them to enforce clean water regulations, and increase development.]

It also hurts the mitigation industry. So again, one of the things that’s been reported by environmentalists, and it’s not necessarily a Democratic perspective. We’ll just say its from an environmentalist perspective. There could be a capitalism element in the ability to trade mitigation credits for developing in an area in a sensitive area. [For example,] “Yeah, you can build a power plant here, but you have to buy this land here, and you’ll be able to sell that or get a loan from the bank to do that at a reduced interest rate.” It turns this mitigation industry into a trade and sell industry to offset environmental damage, and that’s a $9 billion industry. But because [the rule change] removes [the protections from] those streams and rivers at a federal level for that federal designation, now that land is no longer eligible for mitigation credits. 

So it hurts that industry, which from a deregulation standpoint, is the goal of the Trump administration. So again, it’s the strike at this blossoming industry and $9 billion is not something to ignore, but again, in terms of other industries, that is small, so maybe this [change has] just hamstrung the mitigation industry. And why? What is the reasoning for this again? They say deregulation, but also they say that they want to make it easier for farmers and such to develop in terms of permitting. But again, now you have a situation where you have a very vague, ambiguous federal law, and then you’re also going to have a state interpretation of that law. And so now you’re dealing with two interpretations of the law, which means that, for people who don’t have lawyers just sitting around on hand, ready to work for them, this could be a problem. So for a very small farmer, this might actually be worse than before because before you had a very clearly defined single federal rule across the board. Then you were working with the EPA with the Army Corps of Engineers. But now you’re working with three entities. You’re working with the state as well.

So now there’s more ambiguity in the laws. And so this actually might make it more difficult to get a permit, which could be good or bad. It might mean people will just stop trying to get permits and in terms of EPA enforcement, with a relaxed enforcement regime, maybe they won’t [need to get permits]. Maybe, you know, nobody will care. So we might just see people forget about the rule [and say], “this is too complicated” or “I don’t feel like I need a permit”. And so, overall, we’re probably looking at an increase in pollution in these streams. There’s another component to this as well, not just mercury contamination. Mercury contamination is always one of the most present contaminants for fresh water. There’s another type of chemical called a non-stick chemical, which is used in non-stick cookware. 

I’ll try to say the word here – polyfluoroalkyl substances or PFAS. The interesting thing is that the EPA has adopted a recommendation for these substances that says that 70 parts per trillion is safe, which is about 10 times higher than the Agency for Toxic Substances and Disease Registry, which is a branch of the U. S. Department of Health and Human Services. So the EPA is adopting a more relaxed policy on these PFAS chemicals, which can cause birth defects, cancer, affect immune function, and disrupt thyroid function. The EPA is adopting a more relaxed enforcement policy on these toxins than the US Federal Department of Health. And that’s concerning to me because it’s demonstrating another example where you have multiple federal agencies at odds with each other. The end result here is that you have the EPA kind of at odds with both the US Geological Survey and the Human Health Service. So that’s that’s kind of concerning. And so I won’t say more about that right now because that, you know, could just be part of a bigger pattern that hasn’t really manifested yet. But it’s definitely clearly there in an early stage. And so that was kind of my big climate, um, regulation story, 

And then I’ll just talk about one more story as well. This article is from Wired magazine, which again is one of my consistently highly ranked science news articles. The title of this article is “We might not be planting the right kinds of forests”. This is interesting because the collaboration between Wired.com and Undark.org, which I don’t know much about. But I do know that the author of this article, Isabella Kaminsky, is a freelance environmental writer, and I really love this article, so I recommend reading it. It’s one of the best popular science articles I have ever read. To start my notes, So what’s the problem [with global reforestation efforts]? We might not be planting the right kinds of forests. It’s an interesting question because we look at forests as a way to offset carbon. We want to extract carbon from the atmosphere, and we want to take CO2 out of the atmosphere and store it somewhere. We could store it in a box [(using advanced technology that isn’t routine yet)]. We could store it in a tree. We could store it in algae or [fast growing switchgrass]. Those are all different types of carbon sinks.

You think of forests as really good natural carbon sinks because they already exist, they grow on their own, they have animals in them. They have lots of plants in them. In terms of carbon sinks, in a global perspective, forest growth is really kind of the best thing we could hope for. And it’s one of the biggest things we’ve lost, right? That’s why we have so much carbon in the atmosphere now, it’s because of deforestation [and other burning of fossil fuels]. I think going back again to the last 30 or 40 years, people started to realise climate change is going to happen, and that we need to have a plan to try and mitigate the carbon shift. Plant trees anywhere you can just, you know, planting as many pine trees as possible, whatever. [They had this kind of attitude like,] “Just, you know, we just got to get trees back”. And a lot of that comes from kind of a naive understanding of ecology. And again, which goes back to the first article learning more about science. We learned about the importance of ephemeral streams, temporary streams and wetlands. And maybe now we’re learning about the importance of a naturally regenerated forest.

So a major problem that we’ve seen is well, we kind of see in some places, we see total forest cover. So the total area of land covered by forests might see that increasing in some areas on the planet. However, the question is, what’s the quality of those forests? We think that a natural forest might function 40 times better as a carbon sink than a plantation or a timber farm. A plantation in this sense is basically a managed timber farm where the company of person and entity has gone out and planted hundreds thousands of trees, but they’re all the same species. It’s not really a forest because there’s no biodiversity, so that’s part of the problem. In a plantation scenario, you have a single timber type. It might be a non-native species or misplaced ecologically, because again, if you’re if you’re in a plantation, the purpose of growing a plantation is to eventually [harvest the timber]. [Typically] plantations will have 10 or 20 year plans, and you have different sections of it being sold a lot of different times. So overall you are maintaining the carbon sink, but the end goal is to sell some of that timber off or use the timber for something economically, so it might not be a native species.

I can’t think of any good examples other than eucalyptus trees from California. In Southern California, you see eucalyptus trees, [which are native to Australia], everywhere, but ecologically, they’re useless. They create these really dense eucalyptus forests that have no other type of tree because the leaves fall and grow in a way that prevents other plants from sprouting up. Oak trees do something similar, but the oak tree has a multifaceted ecological niche of its own, with acorns and the leaves and [parts of the tree/bark itself]. So an oak tree might dominate a forest patch, but again has its own little ecosystem. Squirrels and birds and things like back and live in the oak forest, [which increases the overall biodiversity]. Whereas a eucalyptus forest might be kind of devoid of life, maybe only some types of birds can eat the eucalyptus seeds. 

[In general], plantations are going to have low biodiversity. Additionally, the soil quality is going to be determined by biodiversity of what’s going into that soil. If only one type of plant is going in, you’re not going to have a lot of nutrients in that soil. Now, a natural forest is going to have multiple timber plant types, multiple native species, high overall biodiversity, and high quality soil. That’s why the function of a natural forest as a carbon sink is 40 times [better than a timber plantation]. It’s not just the trees, it’s the whole ecosystem that the forest is creating. One of the big points about this article, and [that was why] I wanted to fact check it, was that they made the claim the amount of carbon absorption historically estimated by forests has been overestimated, which is bad because in our climate models, if we say “Well, look, if we if we create forests at this rate [“Rate A”] then we can reduce carbon in the atmosphere at this rate [“Rate B”] and we can curb climate change. But if you overestimate how useful a forest is [(in terms of its carbon absorption rate and capacity)], it’s going to throw off your climate model, and it might actually make us think that we’re better off than we are. That’s kind of what these studies were saying now is that we overestimated the current way, [or at least, the way that has been historically used in scientific studies]. We’ve been doing [mostly single-timber, plantation] forests, and so the forest we have right now that we’re currently making might not be as useful as we thought they would be at curbing climate change.

So here’s a study from the University of Birmingham, and the title of the study is “The role of forest regrowth in global carbon sink dynamics”. Here’s some main points from the article. 1. Estimates of carbon uptake vary widely. 2. The geographical distribution of where carbon uptake is uncertain. 3. The primary source of uptake is a shift in pioneer species following demographic change. What does that mean? So in the forest we see right now, the primary source of carbon uptake is this shift from old growth forest, right, cause you go in, you clear an old growth forest. That old growth forest has been saturated in terms of carbon. Think for maybe 100 years. Clear it. And what grows there are really fast growing species, [and those] could be fast growing trees. It could be fresh going grass, plants, shrubs. The point is, pioneer species are really fast growing. So you clear that land. It goes in, boom. You get this big carbon sink, but those plants don’t live for long. They might only live for six months. They might die during the summer, so you might get a burst of carbon absorption that then immediately is lost. You might have a slow transition to different types of trees. Again, pioneer trees, as opposed to like old growth types of trees like pines and oaks. I should apologize too, I’m not an expert at forestry. I’m just using my best examples from California Coastal Sage Scrub, which again is not a really great forest example. 

But the point is, you still see this idea of pioneer species [in Coastal Sage Scrub], and also in regrowth stands in [“regular”] forests. The stand is “a contiguous community of trees, sufficiently uniform and composition, structure, age, size, class distribution, spatial arrangement, site, quality condition or location to distinguish it from adjacent communities” – (Wikipedia.org). For a stand, that’s just a unique group of trees, a segment of a forest, and so regrowth stands benefit more from increased CO2 levels, which is called CO2 fertilization more than old growth stands because the old growth stands are already saturated. So you have a clearing event and then you get a bunch of pioneer species. And those pioneering species love the really high carbon dioxide levels that we see right now because we’re in you know what, over 400 parts per million (ppm) in terms of carbon dioxide and so these pioneering species go in, they love it, they absorb all this CO2, and then they die and they release it again. And so you didn’t get a good carbon sink

[But it’s potentially] worse than that. Let’s say you have a medium regrowth forest. But it might be subject to other types of degradation effects again, like I’ve seen they die because, probably the biggest one is an edge effect. So edge effects are, imagine a patch of forest with open space in between them. Those edges [surrounding the forest with open space], they’re not protected from, either wildlife [(grazing, wildlife paths)], or other types of ecological phenomenon. So instead of growing outwards, you actually lose forest in, other words, [edge effects might cause a regrowth stand to] keep losing habitat. [If a regrowth stand can overcome the degrading effects of edge effects,] those regrowth forests will shift towards old growth forest. But then you have a second problem, because even though the CO2 in the atmosphere is saturated, you’re lacking soil nutrients. So in these areas, they’re going to have a hard time becoming full old growth forests, which are permanent carbon sinks.

There’s one more point, and that is that CO2 saturation isn’t necessarily a good thing. So having all this excess CO2 to gain in a regrowth forest, or even an old growth forest, it causes plants to move through their lifecycle quicker. Imagine having access to food all the time. You’re just eating all the time and you’re growing all the time. There’s no rest period. So the trees are never resting, never stopping growing, just grow, grow, grow as fast as they can. And then boom, they die. Maybe they lose their canopy structure. Something like that. 

So, overall, forestry mediation is still a great way to create a carbon sink, but we have to think about how we are doing this. And again, the methods that have been used to estimate how these forests uphold carbon have probably been wrong. So we need to shift to a more stochastic model approach, which this paper has done. And future estimates might be reversed revised further down. So as we get better estimating the carbon sink of a forest, the actual amount of carbon that’s been absorbed might continue to go down. Let’s talk about what’s going on in terms of mediation globally. The United Nations has sought to implement this system of reforestation in the REDD program, which is Reducing Emissions from Deforestation and forest Degradation. 

This creates a financial value to reduce emissions and for developing countries this creates an incentive for them to invest in carbon solutions to sustainable development. Going back to that mitigation economy, [the REDD program is] trying to create this mitigation economy, trading carbon credits and things like that in order to incentivize people financially to engage in these sustainable activities. Its primary focus is on reducing deforestation and forest degradation. But it also seeks to financially reward conservation efforts, the implementation of sustainable management practices, and generally enhancing carbon stocks in any way. The REDD program was adopted as a [mitigation] method in the 2015 Paris Climate Agreement, which the United States has withdrawn from, and another global effort, called the Bonn Challenge was launched in 2011 by Germany. It was a global challenge to restore 150 million hectares, which is 1.5 million square kilometres of deforested and degraded land by 2020 and 350 million hectares by 2030, but unfortunately, most of the land, about half the land that was dedicated to this Bonn challenge is this plantation, timber [forested land]. So I think that’s bad. 

Just looking forward, how can we make better carbon sinks [as a part of these global restoration programs]? This brings in the idea of a naturally regenerating forest. The problem that we saw is that about close to half the forest pledged under the Bonn challenge will be planned timber plantations. And not just in the Bonn challenge, but in general, we’ve seen a global shift towards these plantations. So what can we do? The idea of a managed natural regeneration technique. So probably one of the biggest things that goes into [developing a naturally regenerating forest], is that we need to understand the native environment [(in terms of plant and tree species)], and the native soil environment as well. So humans and sustainability managers can go in and we could modify the environment [so its more suitable to regrowth stands]. We could help the environment [based on our ecological knowledge], but we want to do that in the context of what that environment should be. In other words, I don’t want to create an oak forest where there used to be a peat bog. That wouldn’t make any sense. So you want to match the soil type with what should be there and think about the biodiversity that should be there. 

So the example that was given in this article is that in the United Kingdom there might only be in total 20 different tree species on the whole island. Whereas in Tanzania, there might be 20 tree species in a single acre, and that’s all going to go into the soil and the area management success. So in the UK, maybe a timber plantation actually isn’t that bad of an idea, because that’s all that you would have [there in terms of biodiversity]. In other words, you’re matching the natural habitat that used to be there. But in Tanzania, that might be a really bad idea, because that ecosystem, [if it were identical to the one designed in the UK using UK native species], might collapse after 10 or 20 years because of the lack of biodiversity. 

[In order to trigger natural regeneration of a forest, the idea is to] help a forest, so you want to find a forest that already exists and expand it. You want to clear land next to that forest and then maybe help plant trees, but in a way that’s diverse. So understanding that diversity means that you’re going to have to engage the locals. You can’t just come in and say, “Oh, you know, I’m forest manager. This is Tanzania. I don’t know anything about Tanzania. I’m going to start planting pine trees everywhere.” Well, that’s not a good idea. You have to go in and understand the native species that should be there and develop a plan to expand those species. Maybe that just involves planting seeds and seeing what grows naturally. [That would be an example of a natural management technique.] One of the examples of that is in Myanmar where sustainability managers have started using drones to disperse seeds, and then the seeds can naturally take their course. So you go out, you drop a diversity of seeds and whatever grows, it grows. You’re not spending a whole lot of time transplanting trees that shouldn’t be there. In other words, it might take longer to regenerate, but it’s going to be a more natural regeneration process. 

Overall, you’re going to have a better carbon sink, or a more long term carbon sink, [from a naturally regenerating forest]. It’s going to be less likely to be transient, and you will have the local population will be more engaged because you’re using that local knowledge to create a diverse forest that ultimately should be seen as an economic benefit for the local population. And that’s the way. That’s the only way that this will be sustainable, if you engage local populations, because then they see the forest as a benefit is the economic benefit. And so they’re going to be more likely to help with the restoration efforts. And that’s Bryan White with the Planetary News Radio signing off.

———————————————————————————————————————

Trump administration strips pollution safeguards from drinking water sources

https://www.theguardian.com/environment/2020/jan/23/trump-clean-water-protections-rule-rollback

  • Trump administration rolls back protections for ephemeral (temporary) streams and wetlands.
  • DJT called the 2015 expansion of the Clean Water Act (1972), which made it illegal to pollute “navigable waters”, “a very destructive and horrible rule”.
  • U.S. Geologic Survey has estimated this expansion to include ephemeral streams & wetlands had accounted for 18%% of streams and rivers, and 51% of wetlands, nationally.
  • In the Arid West, the percent of ephemeral streams and rivers accounts for closer to 35% of total streams, meaning that these states will be disproportionately affected by the rollback.
  • Arid West region includes:  Nevada and Arizona, and parts of California, Idaho, New Mexico, Oregon, Texas, Wyoming and Washington
  • Current EPA administrator claims no data, or they are incapable of estimating the number of streams and wetlands affected by the rollback nationally (USGS data is from 2017 during initial discussions of the rule change, prepared by the former administration).
  • In the 2019 Economic Report by Donald Trump, the rollback is claimed to be “the most economically significant deregulatory action for energy”.
  • Specifically, weakens rules for regulation of mercury contamination.
  • Kicks the regulatory process to the state level, where many states have inadequate resources, for example, only 10 states have funding in place for this. Most with less than 20 employees.
  • Guts the mitigation industry ($9 billion industry) by removing eligible lands that could have been traded for carbon/environmental credits with banks.
  • Does not simplify or grant clarity to the rule (DJT reasoning for the rollback), makes it more complicated, and more ambiguous, meaning low-income farmers will need to hrie consultants to interpret the rule.
  • Additionally, further deregulation of non-stick chemicals, AKA. polyfluoroalkyl substances (PFAS), is at odds with health department recommendations.
  • EPA recommends 70 parts per trillion as safe, which is 10 times higher than the recommendation by the Agency for Toxic Substances and Disease Registry, a branch of the US Department of Health and Human Services (HHS).
  • Side effects of PFAS toxicity include low birth weight (affecting pregnant women), negatively affects immune function, cancer (some types of PFAS), disrupts thyroid function (some types of PFAS).
  • Finally, Upcoming budget cuts $410 million for projects protecting waters of the Chesapeake Bay, Puget Sound, Great Lakes

Sources:

EPA head says clean-water access is ‘biggest environmental threat’ — despite regulation rollbacks

https://www.cnn.com/2019/03/20/politics/epa-andrew-wheeler-clean-water-speech/index.html

Debunking the Trump Administration’s New Water Rule

EPA falsely claims ‘no data’ on waters in WOTUS rule

https://www.eenews.net/stories/1060109323

EPA head says clean-water access is ‘biggest environmental threat’ — despite regulation rollbacks

https://www.cnn.com/2019/03/20/politics/epa-andrew-wheeler-clean-water-speech/index.html

Basic Information on PFAS

https://www.epa.gov/pfas/basic-information-pfas

The Latest: EPA bars AP, CNN from summit on contaminants

https://apnews.com/d799f4e096cc42cf99ae01b02d1e0688

We Might Not Be Planting the Right Kinds of Forests

https://www.wired.com/story/we-might-not-be-planting-the-right-kinds-of-forests

Author: Isabella Kaminski is a London-based freelance environmental writer specializing in climate justice, environmental policy, and nature. 

  • Major problem is a shift from natural forests towards plantations, in addition to overall forest loss and degradation (Question/Problem: are we rebuilding the right forests?)
  • Natural forest functions 40 times better as a carbon sink than a plantation/timber farm
    • Plantation: Single timber type, could be non-native species or misplaced ecologically, low biodiversity, low soil quality
    • Natural Forest: Multiple timber/plant types, multiple native species, high overall biodiversity, high quality soil
  • Historically, the amount of carbon absorption estimated to be filled by forests has been overestimated, but to what degree is still uncertain. Why?
    • From a study out of the University of Birmingham and published in the Proceedings of the National Academy of Sciences in the United States
    • Title: Role of forest regrowth in global carbon sink dynamics
    • Estimates of carbon uptake vary widely.
    • Geographical distribution of where carbon uptake is uncertain.
    • Primary source of uptake is a shift in pioneer species following demographic change (e.g., immediately following deforestation, the first wave of new growth is fast-growing, transient species – big carbon-absorption burst that might disapear).
    • Regrowth stands 
    • What is a forest stand? “A forest stand is a contiguous community of trees sufficiently uniform in composition, structure, age, size, class, distribution, spatial arrangement, site quality, condition, or location to distinguish it from adjacent communities.” – Wikipedia.org
    • Regrowth stands benefit more from increased CO2 levels (“CO2 fertilization”) than old growth stands – they are already saturated.
    • Regrowth forests might also be subject to additional degradation effects (e.g., edge effects) that might further reduce long term CO2 absorption efficiency.
    • Even though atmospheric CO2 is saturated (excess CO2 in the air), the limiting factor will still be soil nutrients.
    • CO2 saturation isn’t necessarily a good (or neutral) thing, causes plants to move through their life cycle quicker, increasing biomass turnover and decreasing long term sink potential.
    • Overall, forest remediation can act as a major carbon sink and help mitigate climate change, but ultimately this source (excluding naturally regenerating forests) is largely transient in nature.
    • Overall, current estimated CO2 uptake is substantial but less than previously thought -> due to a shift from “bookkeeping estimation” methods towards a stochastic modeling approach.
    • Future estimates might be revised further down.
  • United Nations sought to implement this system of reforestation in the REDD program (Reducing Emissions from Deforestation and forest Degradation)
    • Creates a financial value to reduce emissions in developing countries and invest in low-carbon solutions to sustainable development.
    • Primary focus is on reducing deforestation and forest degradation, but also seeks to financially reward conservation efforts, the implementation of sustainable management practices, and generally enhancing carbon stocks in any way.
    • 2015 Paris Climate Agreement formally recognizes the utility of the REDD method in the form of the UN-REDD programme.
    • Additionally, the Bonn Challenge, launched in 2011 by Germany, is a global challenge to restore 150 million hectares (1.5 M km^2) of deforested and degraded land by 2020, and 350 million hectares (3.5 M km^2) by 2030.
  • In some cases, even the private sector has noted the benefit of forest restoration as a carbon sink/carbon offset, with Shell pledging $300 million in forest restoration project funding (although not in the U.S., the projects are located in the Netherlands and Spain).
  • But the important question is: Are these global efforts producing the right kind of forests?
  • Problem: Close to half the forests pledged under the Bonn challenge are due to planned timber plantations.
  • More problems: The global shift towards plantations is problematic, but so is an overly aggressive aforestation strategy (new forest development where there was never previously a forest, as opposed to reforestation, the restoration of previous forests)
    • Aforestation in unsuitable habitats might actually cause lower carbon sink production than other types of natural habitats, including wetlands, grasslands, peatlands, and bogs.
    • These habitats might have specific nutrient requirements (e.g., bogs have a diverse array of species adapted to low-nutrient environments such as carnivorous plants and mycorrhizal fungi.
  • Reforestation efforts might be stalled by a lack, or loss of, local knowledge of what types of species should have been living there. For example, the entire UK might only have less than 20 native tree species, whereas Tanzania might have that much tree diversity in a single acre.
  • In some cases the soil might be so degraded that it is no longer capable of hosting a forest.
  • This suggests a managed natural regeneration technique is the best option. For example, mangrove trees have been planted in Myanmar using drones to disperse seeds – the seeds can naturally take course (if they land in a place where soil/swamp is valid).
  • Ultimately the forest economy should be designed to benefit the local population, which will make it more likely for local residents to stay engaged in the development of the forest.

Sources

Role of forest regrowth in global carbon sink dynamics

https://www.pnas.org/content/116/10/4382

UN REDD+

https://www.unredd.net/about/what-is-redd-plus.html

Achieving the Paris Agreement through REDD+ and FLR

https://www.un-redd.org/post/2018/09/03/achieving-the-paris-agreement-through-redd-and-flr

Bonn Challenge

https://www.bonnchallenge.org/

The Planetary News Radio – Episode 15: Scientific Suppression Case Study: TOXMAP

Welcome to the Planetary News Radio, Episode number 15 with your host Bryan White and I’m here today outside in Corvallis and it is raining out. It’s very dark, and in order to avoid the rain, I’m actually under a bridge. So there’s some background noise from cars. That’s just the setting that I’m in. I had a [complaint, well I don’t want to call it a complaint], but a criticism recently that I’ll respond to about the show. What was mentioned is that the show is recorded outside. And yes, the show’s recorded outside in different settings. Sometimes it’s hiking, which might be a quiet setting, and sometimes it’s in the city, and I think that’s that’s part of the show, because it’s dynamic. And so I want to be true to the art of presenting science, and the setting is part of that. So occasionally there are times when there will be background noise. I won’t say too much more about that. And my goal is not to respond to all criticism, but just to give listeners, you know, some insight into why I’m doing [the show this way]. Yes, I could record in a quiet studio, but then it wouldn’t be the “planetary news”, it would be the “indoor quiet studio news”. 

Continuing on, the topic for today is about suppression in science, scientific suppression. And this has always been a problem. Historically, the United States has a major history of scientific suppression, going back into the sixties and the seventies with pollution and climate science. And now we’re finding out things like ExxonMobil knew for 40 years what oil use could do to the environment, and covered that up, similar to the way that tobacco companies initially tried to hide what could happen from tobacco use and nicotine use. And so we see, that same thing persisted in America and now we’re at this strange dichotomy where the science is overwhelming [in favor of anthropogenic climate change]. ExxonMobil can’t deny that they know that climate change is real. In other words, they can’t conduct and do all the science that they do in their industry, because oil extraction is an extremely scientific industry that makes use of geology and hydrogeology. And so they can’t claim to be scientifically extracting oil from the Earth and know all this geoscience, and also then deny that climate change is happening and that it’s caused by carbon emissions from humans.

So now we’re at this rare transition period where you might see British Petroleum (BP) or ExxonMobil actually accepting that climate change is real and doing things to mitigate carbon emissions [because the scientific evidence is overwhelming]. But how did we get to this point? How did we get to the point where, our greatest minds as scientists were able to create all these oil extraction technologies, while on the political side, the implications of [burning fossil fuels] were hidden? And that’s why understanding scientific suppression is important. Recently, the Trump administration [has been] overtly doing this for the first time [in a way that can be recorded]. So it’s always been a kind of a hidden thing that we knew was going on in America, but we couldn’t really put our finger on it. But now with the Trump administration silencing civilian science, social media accounts, and basically putting a gag order on [scientists] in 2017 when his administration started taking over the EPA, Department of the Interior, and all the [federal] government organizations related to science and national parks, we saw this huge, almost national gag order put out. 

In response to that, Columbia University began what they call a “Silencing Science Tracker” and the website for this is http://www.climate.law.columbia.com, [which is a part of] the Columbia Law School Center for Climate Change Law and the Climate Science Legal Defense Fund (https://www.csldf.org/). And so, the silencing science tracker is tracking overt (provable/documentable) instances where science has been suppressed in or by the United States government. And to this day, which is January 4th 2020, there have been 385 instances of over scientific silencing tracked and logged in the Columbia Science silence in silence structure.

A couple of examples here that they have the most recent one is, something called the TOXMAP database. TOXMAP (https://healthdata.gov/dataset/toxmap%C2%AE-environmental-health-maps) was a database run by the National Library of Medicine (NLM) that integrated 12 scientific data sets into one data set in order to view the tracking of known hazardous materials on U.S. soil. The function of the TOXMAP was to list [the location of sites contaminated by] chemical contaminants on the National Priorities list. And so the National Priorities list (https://www.epa.gov/superfund/superfund-national-priorities-list-npl) is a list of sites that have been investigated by the EPA and declared either potential sources of hazardous chemicals or places where there already are hazardous chemicals released in the environment, and which could have been [reported] as an environmental violation. Or it could have been something historically, maybe a site from the 80’s before there were environmental regulations. But now the contaminant exists, and it’s still there in the environment. And there’s 1335 of these sites that are tracked. 

The goal of this [integrated] tracking system was to obviously track the mitigation of these sites and to see how contamination is being removed and cleaned or expanded. Are there new sites popping up? Was there a new spill somewhere? And now that place is logged as a site. And so, having all this integrated data on an area [on one map], it could help scientists make decisions because pollution is a complex event. It’s not always as simple [as an oil spill over here] or we spilled Mercury here. What [is the plan to] clean it up? What [are the immediate environmental effects?]. We don’t know what the downstream ([longterm]) effects could be. One pollutant might not be as harmful in one area as another area. Spilling mercury in the ground in the middle of the Arizona desert might not be as bad as spilling mercury into a river in the middle of the Mississippi. So having integrated data sets [like TOXMAP] is really important for environmental scientists to make decisions. So I see this as a really powerful tool that I never even knew about now is gone. And so I wish I’d known about it before, because then I could have seen what was available. Environmental science and pollution tracking isn’t my specialty, so it’s something that I missed. But I regret having missed it. 

Now that I’m reading about it, so what are these NPL sites [that were in TOXMAP], The National Priorities list? So these are sites that have been reported to the EPA where a pollution contamination event has occurred, and then the EPA has conducted an investigation and given them a hazard ranking score. And so this is a hazard ranking called the Hazard Ranking System a system that ranks the relative risk of site’s adverse effects on human health. So it’s basically a relative risk in the spectrum of all of the sites where contamination has occurred. [The score answers the question,] “How bad is this one?” 

What are some of the factors that went into scoring these sites? This is from EPA.gov. Number one, the likelihood that a site has released or has the potential to release hazardous substances into the environment. Number two, the characteristics of the waste with toxicity and quantity. Number three, [the presence of] people or sensitive environmental targets affected by the release. So is this something that happened in the middle of a community, or happened in the middle of nowhere? [Did the spill occur in an environmentally sensitive area, e.g. nature preserve?] That’s all going to go into the hazard ranking score. Further into that part of the score, what are the pathways of the contamination? From EPA.gov: Number one, a groundwater migration, which would be drinking water or surface water migration. [This could be direct release] into human drinking water, food chain, or other sensitive environments like lakes, streams and rivers or the ocean. Is that soil exposure or sub-service intrusion? So again, that could affect resident or nearby populations, sensitive environments, or regularly occupied structures. Let’s say something in liquid form leaks into soil [and then] just sits there but doesn’t spread into the drinking water supplies ([e.g., a soil trap]). Well, now, if you have construction [in that area], and say your construction workers go out to dig a hole and they dig through that contamination, now you’ve exposed construction workers to this pollution – [and this could happen years after the initial contamination event]. 

[Another pathway is] air migration. [Was the pollutant] a gas? And again, that’s going to be dependent on proximity to human or other environments. The scoring system has a nice mathematical property, so if [the site] scores really high on one of one of these [areas (e.g., human proximity)], and really low on everything else, it could still be a high risk site. So let’s say you have a low low amount of mercury that was spilled directly into a stream that people fish from, so that could be an extremely sensitive event. And you need to immediately close down the stream because people are immediately going to be exposed to mercury. So this is [why shutting down TOXMAP] is an example of scientific suppression. But it’s tricky because what the Trump Administration has done is they disabled the TOXMAP database, which is the linking together of 12 data sources. But those other 12 data sources still exist independently. So, really, what they’ve done is they’ve slowed down the scientific community ability to track, rank, and understand pollution sites in America. 

So I have a statement here from a Newsweek article from the Environmental Data & Governance Initiative (EDGI). “The dismantling of such a usable public platform connecting health and environmental data certainly accords with the EPA’s own declared strategies, of seeking to exclude so many environmental health studies from policy-making and to neglect or defund on-going environmental health investigations.” 

And so that is what the EPA under the Donald Trump administration is seeking. They have openly declared that they will purposely exclude scientific studies in policy making decisions. [We can see] the end result of that in the TOXMAP, and that’s just one example I [looked at]. If I go through this, I might find other examples [worth talking about], but I just wanted to get this out really quick since it happened recently. I hope everybody had a good holiday season and, on communications and things like that website, there’s a website up for this. It’s iiress.com. That’s the Institute for Integrative Research in Earth and Space Science, which is going to be the overarching, structure for which the Planetary News is operating within, which is the media arm of the research organization, and so we’ll have more on that. That’s Bryan White with the Planetary News Radio signing off.

The Planetary News Radio – Episode 10: Ancient North Siberians, Octopuses as Lab Rats, and Microplastics Invade Deep Sea

Hello. Welcome to the Planetary News Radio Episode Number 10 with your host, Bryan White. I’m going to be doing a Science in the News segment today, which is a brief summary of trending science news articles. I haven’t reed or researched most of these articles unless it was something controversial. So I’m just giving background information based on the headline. So depending how good the headlines are kind of influences how much information I can give about the article.

First up, I have here “DNA from 31,000 year old milk teeth leads to the discovery of a new group of ancient Siberians”. Ancient humans. This is a really exciting area of research because we found out that pretty much anything say, around the last 50,000 years, we can get DNA from now if we can find bones and the bones haven’t been completely fossilized. There’s still organic material in the bones. We can extract DNA and do genetic and genomic analysis on these bones and teeth are a great example of that. [There is] lots of organic material inside of teeth. And so we’ve discovered there’s several species of ancient humans in Eastern Europe, across through Russia, and Siberia, and in Asia. And so while there were radiations of humans out of Africa multiple times, some of those radiations included ancient humans that migrated into Siberia and Asia. In Europe, some of those became Neanderthals. [In Russia and Asia,] some of those became Denisovans, and I don’t know if this new species has been named yet [(Ancient North Siberians)]. This is really considered a subspecies of [ancient human, which are still considered Homo sapiens sp.].

Most of these species would have been able to interbreed with each other. So a good rule of thumb for mammals is if the divergence time for two groups is less than 200,000 years, then hybridization was most likely possible. So modern humans and Neanderthals were [able to hybridize, which] we know it’s proven for a fact that they hybridized because we have genomic data. Using [just] the rule of thumb, we know that Neanderthals and modern humans diverged about 300,000 years ago, and when they met again in Europe, they were only separated by about 200,000 years of evolution, and so they were able to hybridize. So the same thing with this [newly discovered group whose] teeth are only 31,000 years, so certainly these would have been able to hybridize and interbreed with modern humans, Homo sapiens sapiens.

So [this is] just more evidence of new, different groups of ancient humans. And why is that important? Well, it helps paint the picture of the migration and really the prolific amount of adaptation that modern humans underwent in terms of evolutionary change over the last 200,000 years. We really had our own adaptive radiation, just like birds and reptiles and dinosaurs. Humans are one of our own great adaptive radiation stories in terms of evolutionary history, so it’s always cool when we find new human species or unique genetic groups.

So let’s see, we [have] another StarLink article. “Astronomers call for urgent action on you on SpaceX’s StarLink satellites”. Apparently, astronomers are still concerned over the magnitude of the number of satellites that Elon Musk is going to be putting out into orbit around. [It will be] 12,000 satellites [in total], and this is now still a trending story every week for the last couple weeks since the initial launch has occurred. Like I said last time, I think it’s a fair criticism, but it also forces us to think about space junk in general, which is good. So Maybe Elon Musk is doing us a favor by forcing the conversation, and hopefully there’s some resolution with these satellites and [policies towards “space junk”].

Here’s another interesting evolution biology topic or medical two. The newest lab rat has eight arms octopuses, big brains and unique behaviour spur basic research. Why would octopuses be a really good animal to use in the lab as a research subject? Well, let’s think about rats. Rats are intelligent. They’re small. They’re relatively easy to cultivate. You could have a colony [colony of rats]. They reproduce in the lab. They have a short lifespan, and that life span is about the time that it takes most experiments to perform. But what are the problems with rats? There’s a lot of problems with rats. One of them is that rats get cancer very easily, [upwards of 80% in some cases]. At least in lab stocks of rats, as opposed to wild rats. We’ve been cultivating rats for so long in the lab in a lab setting that they’re very, very likely to get cancer over the course of a two year life span. And so, if you want to do a cancer study on rats, that’s a problem because most of these rats will inevitably get cancer no matter what, whether they’re being exposed to something that is actually increasing their cancer risk or if they’re just living over the course of a normal life span.

[What are some reasons octopuses might make good lab animals?] Octopuses are less cultivated in the lab, [or at least were used in lab experiments more recently], so we probably don’t have very many generations worth of octopus evolution happening in a lab. It would be easier to collect them from the wild and generate a new stock [to improve and maintain lab-strain genetics]. Since lab rats are so domesticated compared to their wild counterparts, it would be problematic to intermix lab rats with wild rats, especially because you have the problem of aggression. So you don’t want to create really aggressive lab rats. It might improve their genetic stock, but then again, you have a problem of having more wild, aggressive rats.

Octopus can be aggressive, but it’s different. They’re a very different animal in terms of behavior. They’re contained in a marine environment. They’re probably not really being handled by the researchers. In other words, an octopus is less likely to reach around and bite a researcher because the environment that the octopus is being stored in isn’t going to be one where the researchers are routinely handling them with their hands. I imagine you can create these lab complexes for octopus to live in, where the researchers don’t really have to interact with them, and they don’t have to worry about getting bit. Octopuses do have a beak that could hurt a human. It could draw blood. But again, they’re not really aggressive, they’re mostly defensive animals, so octopus is not really threatened. Even a wild octopus shouldn’t be a problem. Now they will try to escape, but that’s part of their intelligence. So you have this animal that has a really fast generation time, it has a genetic stock could be easily replenished from the wild, it’s highly intelligent, it’s probably smarter than rats. It’s not really aggressive [compared to rats]. On the negative side, it’s probably more expensive to cultivate because you need all the marine equipment. But stuff like that is coming down in terms of pricing because of advances in material science. So as material science advances, it becomes easier to cultivate an animal like an octopus and then for sets of experiments that will work on an octopus. In other words, if you’re not trying to test a [mammal-specific] hormone, obviously that won’t work. Or it might if you could genetically engineer octopus to do something like a mammal. So maybe we can even test human medicine on octopuses if it’s easy to genetically modify them.

The great dying nearly erased life on Earth. Scientists see similarities today, the great dying, of course, being the Permian extinction, where 90 percent of marine life went extinct at the end of the Permian period around 300,000,000 years ago. And I think maybe 70% of all land life went extinct. And so we see Similar is of that today because of the rapid extinction rates that were seen on the Earth. And so we know that the Permian extinction was accompanied by rapid changes in climate, and a lot of those changes would have been recorded in the geological history in the fossils in the rocks around that time. So we’re probably seen similar patterns of a very rapid global climate change too rapid for animals to adapt, especially marine animals that tend to be more sensitive.

Apparently, the Mars lander Insight is having a problem with its instruments. So “NASA finally has a plan to free Insight’s extremely stuck probe”. So it sounds like the heat probe on Insight os stuck. Insight is an interesting probe on Mars because it’s not a robotic rover like Opportunity [and Spirit were]. It is a It is a stationary probe whose primary mission is to study the geology and geologic activity of Mars. So it has a seismometer that is actually measuring earthquakes on Mars and some other types of thermal instruments. So the fact that one of its probes are stuck is not good, but maybe this can be resolved.

Here’s another controversial topic. “Microplastics have invaded the deep ocean and the food chain”. That’s not good. So micro plastics real problem, because we’re finding out now that it’s permeated our entire water system, including the ocean and freshwater. These are microscopic bits of plastic that now we know we’re drinking and eating, and not just us [(humans)]. All life on earth now potentially being exposed to this. We don’t know the cumulative effects or long term effects of this because it’s just recently happened [the article says we are] finding out that microplastics have permeated all the way down to the deep sea, which means the entire oceanic ecosystem can be impacted from this all the way from the bottom up. So [some of] the primary producers in the ocean are phytoplankton or very tiny, tiny animals [(zooplankton)]. Phytoplankton are photosynthesizing organisms that float up and down in the water. And so now it sounds like, they’re saying, is that microplastics have permeated the entire oceanic column, which means primary producers will be affected as well as secondary producers and secondary consumers.

So if the oceanic ecosystem has been permeated to this degree with microplastic suggests that there could be a cumulative effect and this could lead to an ecosystem collapse. And so I think that’s kind of what we’re waiting for right now. In terms of conservation biology, we’re waiting to start seeing signs of these major ecosystem crashes. We already see signs of top level consumers [being harmed, such as] whales, sea turtles, things like that that are eating fish all the way up the food chain. We already see that they’re being impacted because they’re getting the worst degree of bio-accumulation because they’re eating fish and crustaceans that even in phytoplankton have been absorbing microplastics. So, you know, at the highest level we already get an impact. We get birds stomachs filled with plastic, things like that. So this microplastic problem is really scary. And hopefully my guess is that there will be some extreme measures taken, probably in the next five years to alleviate this. That’s my hope. But I think that it will happen because I think we’ll start seeing more direct [negative] impacts of it that will drive some of those changes.

All right, and that’s all I had today for this Science in the News segment. That’s Bryan White signing out the Planetary News Radio. Thanks for listening. If you’d like to support this podcast that had a patreon going, the link for that is in the feed. The transcripts for all of these podcasts are also on the website, so there’s a link to the website in the feed, and if you would like to join a discord chat, that link is also there. Hopefully, we get people asking questions and things like that in the discord, so thanks for listening. Have a great day.

Join the discussion on Discord at: https://discord.gg/5HQj8eC.

Support on Patreon at: https://www.patreon.com/planetarynews.

The Planetary News Radio – Episode 8: New Fracking Methods, a Hidden Ocean on Pluto, and Other Science News

Hello. Welcome to The Planetary News Radio Episode 8 with your host, Bryan White. Today I’m going to do a segment called Science in the News, and this is kind of like taking the pulse of the internet in regard to science. What I have is just a list of headlines of recent science based trending articles and I haven’t researched the articles, I haven’t read them. All I’m doing is I’m just looking at headlines, and I’m taking the pulse. I just want to know what’s going on in a general sense, just to get an idea of where things are at with popular topics in science and so I don’t miss anything major or important.

The first thing up on this list is “PhD Programs drop standardized exam”. That’s important because PhD [(and other graduate)] programs historically have required a GRE (graduate record examination) to get into graduate. It’s a standardized way to measure capacity or ability and there’s been a lot of criticism about using standardized tests and measure graduate level capacity. And so you see a lot of institutions are dropping GREs entirely for [entry into] graduate programs. One of the first places to do this was UC Berkeley, which dropped the GRE for its biology program and now presumably we are seeing more schools dropping this, and I see that is a good thing for science. I think that if you create a standardized test and people train themselves to pass and do well on standardised tests, then all you end up with our people who are really good at doing standardized tests. So I’m glad to see that a lot of institutions or shifting away from this and maybe taking a more holistic approach to graduate entry, let’s see what’s next.

“Elon Musk’s 12,000 StarLink satellite network has a big problem”. I’ve been seeing a lot about this. So Elon Musk wants to create a satellite Internet called Starling and could presumably have hundreds or thousands of satellites. He’s launched 60 so far, so there’s a string of 60 satellites now orbiting around the earth, and they’re in a very low orbit right now. And so I believe the orbit slowly adjusts itself, but right now they’re in a low orbit, and so you can see the satellite’s fairly easily from the ground, so that’s a problem. It’s [potentially] very distracting for astronomers, and you see a lot of complaints about this network. So the concern is that when the full system is 12,000 satellites long, how much of the sky will be blocked out by this network? So it’s a legitimate concern, but we don’t really know yet. Some other uses of the network might offset that. For example, Elon Musk has said that this network would also be capable of removing space junk. So maybe as the satellites age, they can be repurposed to collect and bring down other pieces of debris in orbit and maybe balance out total space junk floating around Earth. So in general, space junk is a problem. That’s really good topic to talk about later.

Astronomers spot Forbidden Planet in Neptunian Desert”. So this is a planet that’s been spotted where it’s not supposed to exist, and that probably means that the planet is too close to its star. In other words, it hasn’t been obliterated by the star. That’s interesting, because planets that are close to their stars lose matter and mass slowly gets stripped away by radiation, so you see planets [that orbit to close] slowly getting absorbed by their stars. So you would not expect a planet to persist for very long in that range. That suggests, interesting things about this planet. Either there’s something strange about the star or something strange about the planet, and I don’t know, So this makes me curious. I want to go look at it more. But right now I’m not. This is just the headlines, So this isn’t really interesting thing to go look at later. [Scientists hypothesize either the planet began much larger than it currently is or it only recently migrated into the Neptunian zone (< ~1 million years ago)].

“Watch the first solar eclipse ever captured on film”. A year 1900 total solar eclipse. The oldest one ever [recorded]. So there’s a video of a solar eclipse, but not only a solar eclipse, the first ever video of a solar eclipse, has been released. That’s interesting because the year was 1900 and it kind of makes you think for a minute how long humans have been doing astronomy, much before film was invented. We already had a sophisticated understanding of astronomy, and so we think this film is something hi tech [compared to a simple 1900’s telescope], but astronomy, in all of its complexity, really needed only a low tech solution [(telescope)] to collect data. And so we’ve had telescopes for hundreds of years but only movies for only 100 years. That’s an interesting fact to know.

[This story again, “Ancient supernova prompted human ancestors to walk upright”. I talked about that an entire episode last time, which, if you missed, is the idea that a supernova caused a increase risk in forest fires or an increased rate of forest fires. And that might have driven humans to walk upright in ancient humans to walk upright. And so a new theory in the arena of human by P does and theories so that I would expect to develop more.

The James Webb telescope emerges successfully from final thermal vacuum test. So the James Webb telescope is going to be the new Hubble, the new most advanced telescope that we put into orbit around the Earth. So the fact that that’s getting close to being completed is really important and hopefully will begin to see amazing results from that fairly quickly.

Now here’s an interesting one, “Swapping water for CO2 could make fracking greener and more effective”, fracking being a short word for hydraulic fracturing, which is the act of injecting high pressure fluids under ground in order to cause fractures. So it’s a hydraulic fracture, and as those fractures are caused, then oil and gas will seep through into the cracks, and then that oil and gas could be extracted from the rock, but only under the [presence] of that fracturing. And so how you do that fracturing? Historically it has been done with water. So you inject the ground with water and what this article is suggesting that that could be done with carbon dioxide instead of water.

Why is that important? Well, for one hydraulic fracturing absolutely wrecks the water and ecosystem anywhere that it’s done at, because once you use the water, you can’t just dump it back in to a river or a stream. That water is now toxic, so you need two things: You need, one a source of water, and that water cannot go back, and then: Two, you need a place to put the water because not only can you not put the water back, it’s now toxic, and so it’s worse than just being used up. It’s completely unusable for some period of time, so there’s all sorts of ways that this could be done. Either the water is reused and could be used multiple times, but then presumably eventually the chemistry of the water would be altered such that it can only be reused a certain number of times and eventually has to be stored somewhere. And the other way is to just store the water in a pool and wait for to evaporate. And so when you do that, all the chemicals are left behind which creates a waste pit that is highly toxic. And a lot of these toxic components, like radio nuclides bio-accumulate in the environment. So if that pit leaks, if ground water leaks from that and carries the concentrated toxins from the hydraulic fracturing, that will bio-accumulate because fish will absorb the radionuclides and then animals eat the fish, so on and so forth [up the food chain].

These waste pits really jeopardize entire ecosystems. So hydraulic fracturing is really damaging to the ecosystem outside of the [actual] fracturing [itself]. So on top of all of that [above-ground] damage, you’re also cracking the earth in a way that can cause earthquakes. The idea that the water component might be able to be removed, if we could use a CO2 instead of water as the fracturing material, that would be great. As I discussed previously, it’s really tough to make moral change in America’s current political spectrum. So the moral issue here being that hydraulic fracturing is bad for the environment and things that are bad for the environment are bad. But we can’t stop because we need the oil and we need the gas because our economy depends on it. But if we could do something small, like shift away from water and [use CO2 instead], that could help offset some of that damage. That would be great. So I support that. If that is the case, that could be done. That’s great. We could see an immediate lessening of the damage of hydraulic fracturing. You’re still causing permanent damage to the ground. We don’t know what the long term effects will because it’s only been done for the past, say, 50 years routinely, so we don’t know the long term damage of fracturing these rocks underground. We do know that short term they do cause earthquakes.

All right, let’s look at what’s next. “Mysterious SpaceX crew dragon explosion is still being investigated”, so the SpaceX Crew Dragon is SpaceX’s human piloted, reusable component of the SpaceX fleet. There was an explosion recently during the testing of this module, which is maybe a setback on the timeline for when that module will become usable. We don’t know this [happened and it] is still being investigated. It’s not necessarily good or bad news. You would expect explosions that happen during early testing phases, although with a crew module of an explosion happening is really bad because you will have people in the system. So this system has to be way better than the automated ones. The automated ones might crash all the time, or more frequently. That’s fine. There’s no people on there. The risk of loss of life is much more important. So hopefully SpaceX will be able to achieve the same result as it has with its automated systems as with its crewed systems, and so that we can have safe crewed spaceflight again, which we haven’t had, really, at least in the United States. We have been dependent on other countries, mostly Russia, since the space shuttle program was ended which has probably been 10 years now, or something like that.

So what else? “Sonic black holes produced Hawking radiation may confirm famous theory”. So hawking radiation is really interesting because when black holes were first discovered, the idea that the black hole would infinitely continue increasing in Mass was really it was important to know if that were the case. And so eventually hawking decided or determined that it’s not the case that black holes actually do lose energy in the form of radiation. They named Hawking radiation after Stephen Hawking’s theory that black hole could even evaporate eventually. So a very large black hole that’s still gaining mass is not going to evaporate, but a small one, [or shrinking one], once it goes past a certain point, if it’s not gaining any more mass, it’s only losing energy through hawking radiation energy being converted from mass, [at which point it could evaporate]. The very small black hole might evaporate very quickly, and so that’s interesting that hawking radiation is being confirmed. We’re always looking for empirical confirmations of these theoretical concepts, especially with theoretical physics.

Here’s another one, “Ammonia detected on the surface of Pluto’s hints at subterranean water”. This is really interesting because we keep finding out that planets and moons and dwarf moons and even large asteroids might have water on them. Not just water in the rocks but actual underwater oceans or frozen surface oceans frozen, and now Pluto is in the list of celestial bodies that might have an underground ocean along with Europa and a few others.

And that’s a good segue way to this next one, “Without a champion Europa Lander falls to NASA’s back burner, and another one on that big space challenges could put NASA’s European missions on ice”. That is not good to hear. Europa, as I just mentioned, is one of the first moons in this in our solar system that has water has an ocean under its surface. So we really want to explore Europa. That’s one of the places we think has a high probability of having at least microbial life. Even there on the surface or underwater in the ocean. So Europa should be a really high priority target. It sounds like NASA’s losing that priority. Maybe moon missions are being pushed up. So we should track that we should follow up on that.

“Your sea floor may be destined to become diamonds”. Well, that makes sense because the sea floor rotates and subducts under the continents and goes down to the core of the Earth, where it would presumably undergo conditions to form diamonds in some cases. So I’m not sure why it may be I’d have to look at the article again. I’m just looking at the headline and just going off, the headline says. And what I would think about it. And so my question now would be why, with the sea floor not become diamonds, that’s my question.

What’s next? “NASA’s Curiosity Mars rover finds a clay cache”. Oh, that’s interesting. Why would play be important? So one of the theories for the origins of life is focused around clay because clay has some interesting electromagnetic properties that might allow things like ions and it’s early cellular proto-cell structures to develop [into cells]. The other, more popular, theory being hydrothermal vents. So the clay itself could be [considered an] organic material. So if you think of clay as something that is related to organic materials, if Mars has a cache of clay, that could be a cache of organic materials. It could also contain bio-materials. So that’s why finding clay would be really interesting. And presumably Mars should have clay because it had a water cycle. If there’s some exposed clay on the surface, that would be a really lucky find.

And it looks like that’s all I had on my list today. So thanks for listening again. I’m going to keep mentioning these two things. That’s Bryan White signing off with The Planetary News Radio. Thanks for listening.

Join the discussion on Discord at: https://discord.gg/5HQj8eC.

Support on Patreon at: https://www.patreon.com/planetarynews.

The Planetary News Radio – Episode 5: Fear and Censorship in Scientific Communication

Hello. Welcome to the Planetary News Radio Episode. The date is May 30th. It’s a cloudy day in Corvallis, but not raining. Enjoying the temperature. [Let’s talk today about] popular science and censorship. So a great example of censorship in science recently has been climate science. And this is it’s kind of scary how well accepted it is that the censorship is occurring. Strange things like purging the word climate from government documents put out by environmental agencies. So it’s very strange to experience, a blatant, systematic censorship like that by the government, well, specifically by the Trump administration. Attempts to quantify that [censorship] and paint a picture of how widespread that actually is are even more disturbing. I’m looking at an article here that counts the number of times that federal departments and agencies were involved in an act of censorship and sense put out by a group, Columbia Climate Law. So I don’t know if that’s associated with Columbia University or what that is. I haven’t really researched it. I’m just looking at a Scientific American article here, but before I talk about those numbers, let’s talk about my own personal experience with censorship [link to Columbia Climate Law Silencing Science Tracker].

When I was a graduate student, I worked in environmental genetics and the agencies that were interested in environmental genetics were sanitation departments and water districts, at least for the ones that I worked for. More broadly, the U.S. Geological Survey was interested in environmental DNA (eDNA) as a way to track fish or aquatic mammals or other vertebrates. And so I spent a lot of time working on informatics methods to identify species using genetics. And this was really one of those projects in science, which happens quite a bit where we all think we have a really good idea of what is going on. We have a hypothesis. We can test a hypothesis, but maybe it’s something that we’ve already known for years. And so when we went in to test the hypothesis that using genetics to identify species improves are our ability to identify a pollution in a stream, we were reasonably confident that this would be the case, and so it wasn’t really expected it not to be better. It was more of the question, “Could we do it?” And so a lot of what we did were methods studies, and so really, it was developing a method to apply this theory that we already thought would be good.

Some publications had represented data that would suggest using genetics to identify impacted streams. I shouldn’t just say polluted streams, [but streams] that were impacted by either human modification or by pollution or something like that, and it did make sense that genetics would improve our ability to do that because the way that we identify those streams, the way that was historically done was to identify species by looking at them visually. And so we know that some percentages species, especially insects, cannot be identified visually. So we knew there are more species out there. And so the idea was that if we’ve confined more species, then we’ll have a more sensitive tool. So it wasn’t really a question of, well, this will be better. It was more of a question of “How much does it cost? And can we do it? Is it practical?” And so we set out to answer those questions at the group that I was working for, and so I spent about three years working on that project. But every time we found a example where we would find more species or find specific species at different sites, this was always ignored. And so we thought that we had done a good job developing a tool that could improve our ability to detect human impact in the environment, but this was ignored by the supporting agencies of our group.

Not really ignored [outright], but ridiculously high standards were put on us, much higher than other studies. So everything was scrutinized. Money, sensitivity. Any mistake was highlighted. And so it’s overall if you add up everything. This was an act of censorship, and so individually the acts were not censorship. In other words, nobody ever said, “Oh, you can’t publish that result”. All right. Nobody has ever told me you cannot publish that result, however, I have had results that were scrutinized not because not for their scientific validity but for their philosophical impact. So we had many empirically correct results that suggested this would be a better method, and those results were ignored for philosophical questions. So I have experienced censorship and it was government censorship, and that was during the Obama administration. But this is not unusual in biology. Biology is one of the most censored scientific fields in modern times because of the philosophical component, because of the way that it makes people feel uncomfortable about their [world view].

It was not surprising to me that that study did not take off or that those methods were not implemented. And as far as my knowledge, those methods that we were developing are still not implemented by the United States government routinely. Now, there is one thing that has been implemented, and that is the use of eDNA. In that case, the cost of benefit argument worked in favor of the science.The ability to go out and collect a sample of water from a stream and be able to know what species of fish are in that stream based on the DNA and the water is a very powerful analysis because it can be done relatively inexpensively. Now the question is, well, why do you want to know what species are in the stream? And the second question is, Do you need to know how many? Because there’s a very specific limitation of the technology in genomic sequencing. And so the same technology that’s used to sequence a genome is the one that will be used to sequence water to identify DNA in that water sample.

There’s a limitation of that [genomic sequencing] technology that makes it very difficult to determine the abundance, the original abundance of the animals that created the DNA, and so the challenge of the eDNA work was to be able to determine abundance from the sample, and that has been worked on four years for five years now. eDNA is being implemented by the U.S. Geological Service in the United States. And so that’s a federal government agency acknowledging the usefulness of genetics for environmental monitoring. Now, as I read the article that I just read, the conclusion of the article is that developing this on a wide scale would be cost prohibitive. So again, is that an act of censorship? By saying that this technology that allows you two very quickly and rapidly assess the community structure of a stream using genetics is to cost prohibitive? Maybe, Maybe not. I don’t think so. I don’t believe that that is true [that it is more expensive]. The sequencing technology, the cost of DNA sequencing is almost negligible for the amount of sequencing [needed to conduct a routine stream sample]. So really the cost here it would be the labor to conduct the analysis. And so then the question is, what is the labor cost to conduct a genomic analysis versus the labor cost to conduct a visual analysis? And so when someone says that is to cost prohibitive to conduct genetic analysis, you’re saying that it costs more for someone to go out and collect a bottle of water from a stream and put it in their car and drive back to the lab or collect 10 bottles of water and put him in there in a in a cooler and drive those back to the lab later in the day, that it cost more to do that than it does to send a team of 20 people out to count fish visually in a stream. And not only that, but that the extra information gained by doing the genetic analysis is not useful at all has no monetary value.

So that’s what the federal state governments will say, is that genetic testing is to cost prohibitive. And so, let’s see. Let’s look at numbers here that have been published by this group. 51 Instances of Censorship in the Environmental Protection Agency, 35 by The Department of Interior, 25 of the White House, 17 by Health and Human Services, 16 by The Energy Department, 6 at NASA. [The reason] for these [censorship acts] could be science is told they can’t talk publicly, studies discounted in policy making budget cuts for scientific research programs, removing scientists visit from positions limiting the teaching of theories, self censorship, the research hindrance. So the censorship that I experienced would be classified under was self censorship by the scientists that I was working with because they all knew what not to say to avoid budget cuts. [Ultimately, that] research program was defunded.

[Listing types of censorship from the article]

We could not get funding, to research genetics. Some forced personnel changes were experienced that might have been considered censorship. [I didn’t see any] overt interference with education. That’s something you would expect to happen, [for example], at the EPA. [If I wanted to] put out a pamphlet or informational document on environmental DNA and [some authority in the] government said, “Well, you can’t put that out” or if I wanted to put out something on climate change and the government said, “No, you can’t do that”. Well, [we were never specifically told not put out educational materials]. So we tried, and spent a lot of time trying to educate people about [environmental] genetic testing. And so then it became apparent, though it didn’t matter how much people understood they were. Still, there was still a fear of the technology. And so in some cases you didn’t need to censor it because the people who would be making the decisions about money we’re so already inherently biased, and were already afraid of the implications, or just didn’t know just didn’t understand the implications [of adopting the technology], even if we tell them “Look, these are good implications for science, the scientific method will let us improve our current systems”. It didn’t matter. They’re afraid. And so fear is a big driver of censorship, and fear is a human is part of humanity.

We always have a tendency to fear the unknown, and that is part of what being a scientist is: Knowing that the unknown is scary. Particle physics is potentially scary. Genomics is scary. All of these things have impacts that we don’t understand. We don’t know how CRISPr gene modification is going to affect humanity in the next 10 years. We hope that it’s used for good, but it could be used for bad. We don’t know how particle physics is going to affect us in the next 10 years. If we discover a new particle that could modify gravity, that would be amazing. It could be terrifying. We don’t know. We don’t know enough about subatomic physics to conjecture what will happen with the development of new technologies. So does that mean we shouldn’t do it? Should we not investigate neutrinos because we might develop anti-gravity technology? No. I and so that’s why being a scientist is being an adventurer because it’s an adventure. We don’t know where genomics is going to bring us, but we should explore it.

So while fears a big part of, human nature, so is exploration. And so when you have a government entity, the highest levels of the government, continually systematically censoring good science, that’s a problem. And really, this is hindering not just the United States but the entire planet. All of humanity is going to suffer because of the censorship, the anti-science climate in America, because we are the greatest, well, we’re the largest producer of scientific research still, to this day, out of all the countries that produce science. We have a responsibility to conduct the scientific method in a way that is open and fair. And so again, I’ll link back to how I’ve talked about moral consistency. It’s difficult for us to criticize China for its government, censoring its citizens, controlling its science, when we’re now doing the same thing here. So I don’t view the Trump administration as taking a different stance then the ruling administration in China in terms of science censorship. Now, sure, China’s more ingrained. They have the great firewall. They have control over Google in that country. But arguably the United States has a very be strong control of the entire Internet.

While the censorship isn’t [exactly] the same [between the US and China], It’s potentially as effective. So if you have a scientist in the United States who’s the top researcher in climate, and they are barred from speaking at a international scientific conference, then you have effectively stopped the transmission of that idea. And that’s the same thing that China is doing, stopping the transmission of ideas, or at least controlling the transmission. I’m sure that within China ideas are shared freely, and so the scientific research that is being done there is probably very advanced [regarding what’s] known within the country, and what’s published outside of the country is probably much more [limited/controlled]. These are different types of censorship, but, I imagine, that in some ways a scientist working for the government in China almost has more freedom. They’ve given up their ability to transmit ideas internationally, but China is very well aware of the fact that they have a climate problem. And so I imagine that the ruling class in China is very concerned about pollution and, I can imagine that a scientist working on pollution in China is potentially very highly regarded. Their work, if successful, might not be published broadly, at least not initially, because they’re very competitive and they want to use that within the country to promote the ruling class [first].

Whereas in America you see something almost worse, because now you’re telling a scientist you cannot tell anyone about your work. You cannot even tell your friends, and to me, that’s scary. If I can’t tell my friends about genetic testing, that is scary. If I can’t talk about but something that I believe is an empirical fact on climate, that’s scary. And so the regime that is in charge of the greatest scientific producer of scientific work in the history of the Earth is conducting a scary level of censorship. And I’m not trying to scare people by saying that, I’m using an emotive term, and what I mean is that we should be aware that that’s what’s going on. While I have never been barred from a scientific conference, I can imagine what it would feel like to be barred from a conference. I have been questioned for ideas that are well accepted in the scientific community. But again, I’ve never been personally barred from a conference. And so the conclusion here is censorship in the United States. It’s disturbing. I don’t know if I would use the word scary. I suppose I could, it depends on how you you feel about the year 2050. If you plan on being alive in the next 30 or so years, I would say that climate change could be scary. It should be. You should have a healthy, fearful respect for what could happen to the Earth in 30 years.

I think that think the presence of censorship is scary. So I think we should allow ourselves a little bit of fear and use that as motivation. And so maybe that’s the conclusion here is censorship should motivate us, and that’s what motivates me. So this project, aside from all the other things that I’ve talked about, this is a project about censorship as well, and so hopefully I will not be censored. Hopefully, my ideas are relevant, valid, and not censored, but maybe, hopefully my ideas are worth being censored because someone has to take a stance, and a lot of government employed scientists are not in that position. So that’s also kind of where I see is my position is, that since I’m not employed by the government, I can’t really be censored. It would be difficult for the government to censor me. In other words, I’m not going to lose my job over this podcast. This podcast is my job. So that’s my goal. To say what I think scientists can’t say in America. I want to be the voice of people that are being censored. So, if what I’m saying is something that’s worthy of being censored, that would make me proud.

[On that note,] I will sign off for the day. This is Bryan White with The Planetary News Radio, and I hope you enjoy this podcast. Thanks for listening.

Join the discussion on Discord at: https://discord.gg/5HQj8eC.

Support on Patreon at: https://www.patreon.com/planetarynews.