The Planetary News Radio – Episode 11: Is the Moon part of Mars?

Welcome to the Planetary News Radio Episode 11 with your host Bryan White. Today I’m going to do a Science in the News segment, and then I’ll talk briefly about some of the other projects going on with the Planetary News and a little bit about how to help support this podcast to keep it advertising free. Well, let’s get into the Science in the News segment. So again, just briefly, I’m looking at trending articles and science from various sources, and I haven’t really researched them a lot. I’m mostly just looking at the headlines and trying to understand what’s going on in the world and kind of get a sense for the pulse of science news.

And so let’s look here, Number one, “Trump prompts state of confusion over space policy with tweet”. So this is kind of funny, but it makes sense to me. I see where the confusion is. Trump actually tweeted, [paraphrasing], “That the moon is a priority. We shouldn’t be wasting time on Mars”, or something like that. But then he said, “the Moon is part of Mars” and as out of context as silly that sounds, I actually see where the confusion is from that tweet, and it’s actually not that wrong. What Trump should have said is that the development of technology and systems for travelling to Mars are also part of the development of the systems and technology for traveling to the Moon. So if we develop systems for traveling to the moon, we’re also developing systems to travelling to Mars. And that’s an important point because NASA had to make a decision on what to focus their resources on. As much as everyone would love to colonize Mars and the Moon, we have to choose one [first] because resources are limited. And so NASA’s made the decision that we will return humans to the moon first. That will be the priority.

But at the same time, this is going to help with future missions to Mars. And why So one of the things is is that NASA’s gonna be creating a new space station. So an orbital platform for sending astronauts to the moon. So now you have the Apollo missions. Historically, astronauts are restricted to launching on a rocket one way rocket, now breaching orbit, going straight to the moon. Now, with an orbital stop point, you could have a one rocket designed to exit the earth’s gravity, which is a very different process from actually just traveling across space to the moon. And so you can have the second stage of the Moon plan waiting in orbit or the second stage can be refueled. So if you can send fuel to orbit in multiple stages, you can accumulate more fuel in orbit. And then you don’t have to have everything packed on one trip on one rocket, because exiting your gravity is extremely challenging, extremely expensive, so every pound could cost thousands of dollars to get into orbit.

Having a stop point in low earth orbit on the way to the moon, it is a really good idea. And since the International space station is going to be decommissioned, it doesn’t make sense to continue adapting that. And so hopefully this new effort to build a Moon station will continue on to the building of another space station and that station will be used for future Mars missions. So, as silly as it is, what Trump said sounds silly, it’s actually fairly accurate. The mission to the Moon is part of the mission to Mars.

All right, so next up, speaking of the International Space Station (ISS), NASA and its international partners have been struggling to figure out what to do with it. What they’re saying is that NASA will open up the space station [to private tourism], and this has been talked about for a while. This is the first official announcement that NASA will open up the station to private visitors, and so they can pay cash to go visit the International Space Station. That’s great, because then if you could have enough visitors going to the International Space Station, it could support itself. NASA could afford to maintain it and then that station and another space station. The plan is to decommission the ISS by 2025 or something like that. But if it were to become profitable or break even in terms of funding and that funding came from private individuals or institutions, then I don’t see why the station would be decommissioned. And so then we’ll have NASA itself funding a Moon station in orbit, and then we’ll have the International Space Station still hanging around, so maybe we’ll have to space stations in the next 10 years, so that’s good.

A real quick astronomy note is that Jupiter will be the closest to earth it has been in some time, and so this week is a great week to see Jupiter and its Moons, or at least four of its Moons will be visible. Not necessarily to the naked eye but visible, using low magnification like binoculars or something like that. So I’m excited about that. Hopefully there is clear weather.

Here’s a headline from NBC News. Three islands disappeared in the past year. Is climate change to blame? Well, I don’t know because I didn’t read the article, but let’s think about Could that be the case? Could climate change cause an island to disappear? And the answer is yes. That is entirely possible. For a couple reasons, one would be raising water levels so the water gets hired. But there’s a lot of other forces, too, that cause islands to disappear. So erosion forces and things like that changing can suddenly transform an island that might have been growing, adding sand, actor and soil. So all of a sudden, fading away losing sand and all of these things can be influenced by climate. So again, I’m not looking into that. Too much more of us. Looking at the headline saying that sounds plausible. [In this case, it looks like sea-level rise is the most likely culprit].

There’s an exciting headline: “Incredible Pictures of NASA approved 3D homes to be built on Mars before humans arrived”. So again, back to the Moon/Mars controversy. One of the problems with getting to Mars is resource is resource transfer. Mars is a lot farther away so it’s a lot more expensive to carry materials with you. If colonists arriving on Mars could fabricate their own living structures from natural resource obtained on Mars, then that would free up a lot of space on the spaceship to bring them to Mars. In other words, if you can build your home when you get there, you don’t need to bring your home with you. And so that’s why a lot of colonization research is going into 3D printing. So if we could build homes or any type of structure, a greenhouse [for example], the ability to fabricate structures on Mars would be great, and I’m assuming that this will be tested on the Moon first. So as part of NASA’s “Moon first” plan hopefully we’ll see a 3D printer on the Moon.

Like I said, [in the Science in the News segment], I’m just looking at headlines. The reason why I do this is because here is a trending article that appears to be fake news. “Alien life search bombshell exo-moons may be home to extraterrestrial life”. So first of all, I wouldn’t call that a bombshell because the idea that any exo-planet or exo-moon could house life has been a major component of astrobiology for 30 or 40 years, since the first exo-planets were discovered. Scientists have always thought it possible that if there is alien life, either microbial or other, that it could possibly exist in a planet that is in the habitable zone.

In other words, if the planet is not too close to its star, has the right temperature for organic synthesis to occur, and has some solvents like water or ammonia, then it’s entirely plausible that life could exist. Now, that’s my criticism here: [the wording of the headline]. This headline is “Alien life search bombshell”. Not really a bombshell. The problem with exo-moons and exo-planets is that even if they did have life on it, how would we know? So we’d have to find a way to detect the signature of life on a planet only from its atmosphere, because that’s all we can really see from a telescope. So these planets are many light years away, typically so we can’t visit them and see if there are living organisms there. So we need a system to detect the signature of life from a telescope.

And there’s some work that’s been done on that because we know if we were to point a telescope at earth, what would we look for? Could we determine that Earth had life if we were pointing to telescope at Earth from a light year away? And so, yes, we do know there is some signatures we can look for, like really high oxygen content in the atmosphere would be a suggestion, but again, we won’t be able to confirm that [with physical data]. In our lifetimes, we’ll never be able to confirm that [because of the extreme distance of even the closest exoplanet, which is over 4 light years away]. So that’s why this title, I think, is a little disingenuous and so I’m calling out this article. I’m not naming it, just calling out the headline as [potential fake news].

And so that’s it today for the Science and the News segment. I’ll just talk real quick about one of the other projects I’m starting, which is the Planetary Information Engine (PIE), which is sort of like a three stage process. It’s beginning as a wiki, and so the wiki is going to be constructed to gather scientific knowledge, kind of like an encyclopedia, but a more directed encyclopedia – a little less free-form than Wikipedia. [It will have] more structure towards natural language processing (NLP). And so the idea is that an information engine is something that could be used by an artificial intelligence system to augment your own intelligence or a person’s own intelligence. And so that’s the [new] project I’m starting as well, the Planetary Information Engine, and I’ll have more about that as I get further along.

Hope you enjoyed this podcast. That’s Bryan White with the Planetary News signing out.

Join the discussion on Discord at: https://discord.gg/5HQj8eC.

Support on Patreon at: https://www.patreon.com/planetarynews.

The Planetary News Radio – Episode 8: New Fracking Methods, a Hidden Ocean on Pluto, and Other Science News

Hello. Welcome to The Planetary News Radio Episode 8 with your host, Bryan White. Today I’m going to do a segment called Science in the News, and this is kind of like taking the pulse of the internet in regard to science. What I have is just a list of headlines of recent science based trending articles and I haven’t researched the articles, I haven’t read them. All I’m doing is I’m just looking at headlines, and I’m taking the pulse. I just want to know what’s going on in a general sense, just to get an idea of where things are at with popular topics in science and so I don’t miss anything major or important.

The first thing up on this list is “PhD Programs drop standardized exam”. That’s important because PhD [(and other graduate)] programs historically have required a GRE (graduate record examination) to get into graduate. It’s a standardized way to measure capacity or ability and there’s been a lot of criticism about using standardized tests and measure graduate level capacity. And so you see a lot of institutions are dropping GREs entirely for [entry into] graduate programs. One of the first places to do this was UC Berkeley, which dropped the GRE for its biology program and now presumably we are seeing more schools dropping this, and I see that is a good thing for science. I think that if you create a standardized test and people train themselves to pass and do well on standardised tests, then all you end up with our people who are really good at doing standardized tests. So I’m glad to see that a lot of institutions or shifting away from this and maybe taking a more holistic approach to graduate entry, let’s see what’s next.

“Elon Musk’s 12,000 StarLink satellite network has a big problem”. I’ve been seeing a lot about this. So Elon Musk wants to create a satellite Internet called Starling and could presumably have hundreds or thousands of satellites. He’s launched 60 so far, so there’s a string of 60 satellites now orbiting around the earth, and they’re in a very low orbit right now. And so I believe the orbit slowly adjusts itself, but right now they’re in a low orbit, and so you can see the satellite’s fairly easily from the ground, so that’s a problem. It’s [potentially] very distracting for astronomers, and you see a lot of complaints about this network. So the concern is that when the full system is 12,000 satellites long, how much of the sky will be blocked out by this network? So it’s a legitimate concern, but we don’t really know yet. Some other uses of the network might offset that. For example, Elon Musk has said that this network would also be capable of removing space junk. So maybe as the satellites age, they can be repurposed to collect and bring down other pieces of debris in orbit and maybe balance out total space junk floating around Earth. So in general, space junk is a problem. That’s really good topic to talk about later.

Astronomers spot Forbidden Planet in Neptunian Desert”. So this is a planet that’s been spotted where it’s not supposed to exist, and that probably means that the planet is too close to its star. In other words, it hasn’t been obliterated by the star. That’s interesting, because planets that are close to their stars lose matter and mass slowly gets stripped away by radiation, so you see planets [that orbit to close] slowly getting absorbed by their stars. So you would not expect a planet to persist for very long in that range. That suggests, interesting things about this planet. Either there’s something strange about the star or something strange about the planet, and I don’t know, So this makes me curious. I want to go look at it more. But right now I’m not. This is just the headlines, So this isn’t really interesting thing to go look at later. [Scientists hypothesize either the planet began much larger than it currently is or it only recently migrated into the Neptunian zone (< ~1 million years ago)].

“Watch the first solar eclipse ever captured on film”. A year 1900 total solar eclipse. The oldest one ever [recorded]. So there’s a video of a solar eclipse, but not only a solar eclipse, the first ever video of a solar eclipse, has been released. That’s interesting because the year was 1900 and it kind of makes you think for a minute how long humans have been doing astronomy, much before film was invented. We already had a sophisticated understanding of astronomy, and so we think this film is something hi tech [compared to a simple 1900’s telescope], but astronomy, in all of its complexity, really needed only a low tech solution [(telescope)] to collect data. And so we’ve had telescopes for hundreds of years but only movies for only 100 years. That’s an interesting fact to know.

[This story again, “Ancient supernova prompted human ancestors to walk upright”. I talked about that an entire episode last time, which, if you missed, is the idea that a supernova caused a increase risk in forest fires or an increased rate of forest fires. And that might have driven humans to walk upright in ancient humans to walk upright. And so a new theory in the arena of human by P does and theories so that I would expect to develop more.

The James Webb telescope emerges successfully from final thermal vacuum test. So the James Webb telescope is going to be the new Hubble, the new most advanced telescope that we put into orbit around the Earth. So the fact that that’s getting close to being completed is really important and hopefully will begin to see amazing results from that fairly quickly.

Now here’s an interesting one, “Swapping water for CO2 could make fracking greener and more effective”, fracking being a short word for hydraulic fracturing, which is the act of injecting high pressure fluids under ground in order to cause fractures. So it’s a hydraulic fracture, and as those fractures are caused, then oil and gas will seep through into the cracks, and then that oil and gas could be extracted from the rock, but only under the [presence] of that fracturing. And so how you do that fracturing? Historically it has been done with water. So you inject the ground with water and what this article is suggesting that that could be done with carbon dioxide instead of water.

Why is that important? Well, for one hydraulic fracturing absolutely wrecks the water and ecosystem anywhere that it’s done at, because once you use the water, you can’t just dump it back in to a river or a stream. That water is now toxic, so you need two things: You need, one a source of water, and that water cannot go back, and then: Two, you need a place to put the water because not only can you not put the water back, it’s now toxic, and so it’s worse than just being used up. It’s completely unusable for some period of time, so there’s all sorts of ways that this could be done. Either the water is reused and could be used multiple times, but then presumably eventually the chemistry of the water would be altered such that it can only be reused a certain number of times and eventually has to be stored somewhere. And the other way is to just store the water in a pool and wait for to evaporate. And so when you do that, all the chemicals are left behind which creates a waste pit that is highly toxic. And a lot of these toxic components, like radio nuclides bio-accumulate in the environment. So if that pit leaks, if ground water leaks from that and carries the concentrated toxins from the hydraulic fracturing, that will bio-accumulate because fish will absorb the radionuclides and then animals eat the fish, so on and so forth [up the food chain].

These waste pits really jeopardize entire ecosystems. So hydraulic fracturing is really damaging to the ecosystem outside of the [actual] fracturing [itself]. So on top of all of that [above-ground] damage, you’re also cracking the earth in a way that can cause earthquakes. The idea that the water component might be able to be removed, if we could use a CO2 instead of water as the fracturing material, that would be great. As I discussed previously, it’s really tough to make moral change in America’s current political spectrum. So the moral issue here being that hydraulic fracturing is bad for the environment and things that are bad for the environment are bad. But we can’t stop because we need the oil and we need the gas because our economy depends on it. But if we could do something small, like shift away from water and [use CO2 instead], that could help offset some of that damage. That would be great. So I support that. If that is the case, that could be done. That’s great. We could see an immediate lessening of the damage of hydraulic fracturing. You’re still causing permanent damage to the ground. We don’t know what the long term effects will because it’s only been done for the past, say, 50 years routinely, so we don’t know the long term damage of fracturing these rocks underground. We do know that short term they do cause earthquakes.

All right, let’s look at what’s next. “Mysterious SpaceX crew dragon explosion is still being investigated”, so the SpaceX Crew Dragon is SpaceX’s human piloted, reusable component of the SpaceX fleet. There was an explosion recently during the testing of this module, which is maybe a setback on the timeline for when that module will become usable. We don’t know this [happened and it] is still being investigated. It’s not necessarily good or bad news. You would expect explosions that happen during early testing phases, although with a crew module of an explosion happening is really bad because you will have people in the system. So this system has to be way better than the automated ones. The automated ones might crash all the time, or more frequently. That’s fine. There’s no people on there. The risk of loss of life is much more important. So hopefully SpaceX will be able to achieve the same result as it has with its automated systems as with its crewed systems, and so that we can have safe crewed spaceflight again, which we haven’t had, really, at least in the United States. We have been dependent on other countries, mostly Russia, since the space shuttle program was ended which has probably been 10 years now, or something like that.

So what else? “Sonic black holes produced Hawking radiation may confirm famous theory”. So hawking radiation is really interesting because when black holes were first discovered, the idea that the black hole would infinitely continue increasing in Mass was really it was important to know if that were the case. And so eventually hawking decided or determined that it’s not the case that black holes actually do lose energy in the form of radiation. They named Hawking radiation after Stephen Hawking’s theory that black hole could even evaporate eventually. So a very large black hole that’s still gaining mass is not going to evaporate, but a small one, [or shrinking one], once it goes past a certain point, if it’s not gaining any more mass, it’s only losing energy through hawking radiation energy being converted from mass, [at which point it could evaporate]. The very small black hole might evaporate very quickly, and so that’s interesting that hawking radiation is being confirmed. We’re always looking for empirical confirmations of these theoretical concepts, especially with theoretical physics.

Here’s another one, “Ammonia detected on the surface of Pluto’s hints at subterranean water”. This is really interesting because we keep finding out that planets and moons and dwarf moons and even large asteroids might have water on them. Not just water in the rocks but actual underwater oceans or frozen surface oceans frozen, and now Pluto is in the list of celestial bodies that might have an underground ocean along with Europa and a few others.

And that’s a good segue way to this next one, “Without a champion Europa Lander falls to NASA’s back burner, and another one on that big space challenges could put NASA’s European missions on ice”. That is not good to hear. Europa, as I just mentioned, is one of the first moons in this in our solar system that has water has an ocean under its surface. So we really want to explore Europa. That’s one of the places we think has a high probability of having at least microbial life. Even there on the surface or underwater in the ocean. So Europa should be a really high priority target. It sounds like NASA’s losing that priority. Maybe moon missions are being pushed up. So we should track that we should follow up on that.

“Your sea floor may be destined to become diamonds”. Well, that makes sense because the sea floor rotates and subducts under the continents and goes down to the core of the Earth, where it would presumably undergo conditions to form diamonds in some cases. So I’m not sure why it may be I’d have to look at the article again. I’m just looking at the headline and just going off, the headline says. And what I would think about it. And so my question now would be why, with the sea floor not become diamonds, that’s my question.

What’s next? “NASA’s Curiosity Mars rover finds a clay cache”. Oh, that’s interesting. Why would play be important? So one of the theories for the origins of life is focused around clay because clay has some interesting electromagnetic properties that might allow things like ions and it’s early cellular proto-cell structures to develop [into cells]. The other, more popular, theory being hydrothermal vents. So the clay itself could be [considered an] organic material. So if you think of clay as something that is related to organic materials, if Mars has a cache of clay, that could be a cache of organic materials. It could also contain bio-materials. So that’s why finding clay would be really interesting. And presumably Mars should have clay because it had a water cycle. If there’s some exposed clay on the surface, that would be a really lucky find.

And it looks like that’s all I had on my list today. So thanks for listening again. I’m going to keep mentioning these two things. That’s Bryan White signing off with The Planetary News Radio. Thanks for listening.

Join the discussion on Discord at: https://discord.gg/5HQj8eC.

Support on Patreon at: https://www.patreon.com/planetarynews.